neural network -DATA MINING

A neural network is a powerful computational data model that is able to capture and represent complex input/output relationships. The motivation for the development of neural network technology stemmed from the desire to develop an artificial system that could perform “intelligent” tasks similar to those performed by the human brain.

customer-centric-data-mining-10-728

A neural network acquires knowledge through learning.

A neural network’s knowledge is stored within inter-neuron connection strengths known as synaptic weights.

The true power and advantage of neural networks lies in their ability to represent both linear and non-linear relationships and in their ability to learn these relationships directly from the data being modeled. Traditional linear models are simply inadequate when it comes to modeling data that contains non-linear characteristics.

The most common neural network model is the Multilayer Perceptron (MLP). This type of neural network is known as a supervised network because it requires a desired output in order to learn. The goal of this type of network is to create a model that correctly maps the input to the output using historical data so that the model can then be used to produce the output when the desired output is unknown.

The demonstration of a neural network learning to model using the exclusive-or (Xor) data. The Xor data is repeatedly presented to the neural network. With each presentation, the error between the network output and the desired output is computed and fed back to the neural network. The neural network uses this error to adjust its weights such that the error will be decreased. This sequence of events is usually repeated until an acceptable error has been reached or until the network no longer appears to be learning.

A good way to introduce the topic is to take a look at a typical application of neural networks. Many of today’s document scanners for the PC come with software that performs a task known as optical character recognition (OCR). OCR software allows you to scan in a printed document and then convert the scanned image into to an electronic text format such as a Word document, enabling you to manipulate the text. In order to perform this conversion the software must analyze each group of pixels (0’s and 1’s) that form a letter and produce a value that corresponds to that letter. Some of the OCR software on the market use a neural network as the classification engine.

neural

The demonstration of a neural network used within an optical character recognition (OCR) application. The original document is scanned into the computer and saved as an image. The OCR software breaks the image into sub-images, each containing a single character. The sub-images are then translated from an image format into a binary format, where each 0 and 1 represents an individual pixel of the sub-image. The binary data is then fed into a neural network that has been trained to make the association between the character image data and a numeric value that corresponds to the character.

nnpict-791240

Neural networks have been successfully applied to broad spectrum of data-intensive applications, such as:

Process Modeling and Control – Creating a neural network model for a physical plant then using that model to determine the best control settings for the plant.

Machine Diagnostics – Detect when a machine has failed so that the system can automatically shut down the machine when this occurs.

Portfolio Management – Allocate the assets in a portfolio in a way that maximizes return and minimizes risk.

Target Recognition – Military application which uses video and/or infrared image data to determine if an enemy target is present.

Medical Diagnosis – Assisting doctors with their diagnosis by analyzing the reported symptoms and/or image data such as MRIs or X-rays.

Credit Rating – Automatically assigning a company’s or individuals credit rating based on their financial condition.

Targeted Marketing – Finding the set of demographics which have the highest response rate for a particular marketing campaign.

Voice Recognition – Transcribing spoken words into ASCII text.

Financial Forecasting – Using the historical data of a security to predict the future movement of that security.

Quality Control – Attaching a camera or sensor to the end of a production process to automatically inspect for defects.

Intelligent Searching – An internet search engine that provides the most relevant content and banner ads based on the users’ past behavior.

Fraud Detection – Detect fraudulent credit card transactions and automatically decline the charge.

 

 

 

 

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s