Applications of Data Mining

Service providers

The first example of Data Mining and Business Intelligence comes from service providers in the mobile phone and utilities industries. Mobile phone and utilities companies use Data Mining and Business Intelligence to predict ‘churn’, the terms they use for when a customer leaves their company to get their phone/gas/broadband from another provider. They collate billing information, customer services interactions, website visits and other metrics to give each customer a probability score, then target offers and incentives to customers whom they perceive to be at a higher risk of churning.

Retail

Another example of Data Mining and Business Intelligence comes from the retail sector. Retailers segment customers into ‘Recency, Frequency, Monetary’ (RFM) groups and target marketing and promotions to those different groups. A customer who spends little but often and last did so recently will be handled differently to a customer who spent big but only once, and also some time ago. The former may receive a loyalty, upsell and cross-sell offers, whereas the latter may be offered a win-back deal, for instance.

E-commerce

Perhaps some of the most well -known examples of Data Mining and Analytics come from E-commerce sites. Many E-commerce companies use Data Mining and Business Intelligence to offer cross-sells and up-sells through their websites. One of the most famous of these is, of course, Amazon, who use sophisticated mining techniques to drive there, ‘People who viewed that product, also liked this’ functionality.

Supermarkets

Supermarkets provide another good example of Data Mining and Business Intelligence in action. Famously, supermarket loyalty card programmes are usually driven mostly, if not solely, by the desire to gather comprehensive data about customers for use in data mining. One notable recent example of this was with the US retailer Target. As part of its Data Mining programme, the company developed rules to predict if their shoppers were likely to be pregnant. By looking at the contents of their customers’ shopping baskets, they could spot customers who they thought were likely to be expecting and begin targeting promotions for nappies (diapers), cotton wool and so on. The prediction was so accurate that Target made the news by sending promotional coupons to families who did not yet realise they were pregnant.

Crime agencies

The use of Data Mining and Business Intelligence is not solely reserved for corporate applications and this is shown in our final example. Beyond corporate applications, crime prevention agencies use analytics and Data Mining to spot trends across myriads of data – helping with everything from where to deploy police manpower (where is crime most likely to happen and when?), who to search at a border crossing (based on age/type of vehicle, number/age of occupants, border crossing history) and even which intelligence to take seriously in counter-terrorism activities.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s